Narrative-Centered Learning Environments

James Lester

Department of Computer Science North Carolina State University

Narrative-Centered Learning Environments

- Intelligent Tutoring Systems in which learners
 - Actively participate in "story-centric" problemsolving activities
 - Immersed in captivating highly tailored narratives
- Revolve around
 - Believable characters
 - Compelling virtual worlds
 - Rich stories

Narrative-Centered Environments

Narrative-Centered Learning Environments

- Provide students with engaging worlds to participate in motivating story-based problemsolving activities
- Support appropriate levels of student motivation and engagement by orchestrating events in unfolding stories
- Strike delicate balance between advancing the plot and achieving tutorial goals
- Support the hypothesis-generation-testing cycles that form the basis of inquiry-based learning

Interactive Narrative Generation

- Script-Based Interactive Narrative
 - Linear Interactive Narrative
 - Branching Interactive Narrative
- Emergence-Based Interactive Narrative
- Plan-Based Interactive Narrative

Crystal Island Storyworld

Crystal Island Storyworld

Crystal Island Storyworld

Al Schmidt (Foreman)

Alex Reid (User)

Audrey Newsome (Field Scientist)

Brvce Reid (Lead Scientist)

Elise Johnson (Lab Technician)

Jin Lee (Nurse)

Robert Campbell (Lab Scientist)

Crystal Island: Outbreak

- Science mystery where students play the role of a medical detective
- Members of the research team have fallen ill
- Student must discover the cause (e.g., botulism, cholera, salmonellosis, tick paralysis) and source (e.g., milk, eggs, fruit, water) of the outbreak

Requirements of Interactive Narrative Planning

- Balance between advancing the plot and achieving tutorial goals
- Customized narratives for individual students
- Support hypothesis-generation-testing cycles
- Must interleave planning and execution to satisfy real-time constraints

Challenges of Interactive Narrative

Uncertainty in inferring users' ...

- Goals in the storyworld
- Beliefs about the storyworld
- Experiential states
- Multiplicity of factors bearing on the narrative decision making (e.g., ensuring plot progress, maintaining narrative coherence)
 - Users' goals, beliefs, experiential state
 - Users' activities in the storyworld
- Absence of a complete theory of narrative

IntelliMedia

Requirements of Interactive Narrative Planning

Narrative planning should satisfy the following requirement:

Narrative Rationality: Reasoning in a principled manner about narrative objectives, storyworld state, and user state, each with its own associated uncertainty, in the absence of a complete theory of interactive narrative, to rationally select actions that maximize expected narrative utility.

Narrative-Centered Tutorial Planning Architecture

Dual Planning Space

HTN Planning

- Hierarchical Task Network (HTN) Planning has found broad use
 - Very efficient with sufficient application knowledge
 - More expressive than classic STRIPS-style planning (Erol *et al.* 1994)
- HTN Planning
 - Methods: Decompose non-primitive tasks
 - Operators: Achieve primitive tasks
- Several AI planning approaches proposed for narrative generation (Cavazza, Charles, & Mead 2002; Lebowitz 1985; Rield & Young 2004; Young 1999)

Intell

HTN-Based Plot Graph Planning

Plot Graph (Kelso, Weyhrauch, & Bates 1992)

- Directed acyclic graph (DAG) of significant events in the narrative
- Indicates required conditions before narrative progress can occur

HTN-Based Plot Graph Planning

Approach

- Specify HTN domains
 - Tutorial planning domain
 - Storyworld planning domain
- Use HTN planner to …
 - Plan the tutorial constraints which constrain the space of possible stories
 - Plan the major events in the story
- Transform the plan into a plot graph
 - Create a node for each plan step
 - Add arcs between nodes based on preconditions

IntelliMedia

Dual Planning Space

Tutorial Planning Space

- Concepts, goals, methods, and operators for reasoning about student's learning experience
- Encode domain knowledge and curriculum sequence constraints

Narrative Planning Space

- Concepts, goals, methods, and operators for reasoning about the storyworld
- Encode plot construction knowledge, character behaviors, storyworld events, and narrative constraints

Planning and Execution Phases

- Plan Construction: Create inquiry-based problem-solving constraints; create plot and character behaviors
- Plan Execution: Narrative operators drive events in the storyworld
- Plan Monitoring: Track activities in the world
- Replanning: Use current tutorial and narrative state to update plan as necessary

Dynamic Decision Network Based Director Agents

Each time slice encodes:

- Plot Progress: Models the state of the storyworld's plot graph (waiting, ready, complete)
- Narrative Flow: Models the narrative's "thought flow" and "location flow"
- Plot Focus: Models which plot graph nodes are most likely in the users' focus

Dynamic Decision Network Based Director Agents

Each time slice also encodes:

- Physical State: Models the location of the user, characters, and objects in the storyworld
- User Goals and Beliefs: Models the user's knowledge about the salient facts of the story and her goals in the story
- User Experiential State: Models the user's independence, her engagement, and her excitement

Dynamic Decision Network Based Director Agents

Implemented Narrative-Centered Tutorial Planner

Implemented Narrative-Centered Tutorial Planner

- 3D Environment: Valve's Source Engine (Half-Life 2 Game Engine)
- Level Editor. Valve's Hammer Editor
- 3D Models and Sound Libraries: Half-Life 2, Counter-Strike, Internet mod resources
- HTN Planner: BISHOP, Custom-built C++ planner based on SHOP2 (Nau 2001)
- Dynamic Decision Network: GeNIe & SMILE Inference Engine (Druzdzel 1999)

- Narrative goal recognizers can exploit three sources of information to predict users' goals:
 - Narrative State: State of the narrative plan, the current focus of the story arc, goals of characters
 - User Actions: Interaction of the user within the interactive environment
 - User Location: Location of actions performed in the interactive environment by the user
- User goal recognizer provides director agent with kbest predictions about user's most likely current goals
- Director agent uses this information during its decision making process

- Predict users' goals by learning probabilistic goal recognition models
 - N-gram (unigram & bigram)
 - Bayesian network
- Observational Data
 - Narrative States, User Actions, User Locations

- Goal recognition data collected from eighty training sessions
- Approximately 20,000 training records
- Learned unigram, bigram, and Bayes Net goal recognition models

Research Agenda

Studying the effectiveness and efficiency of narrative-centered science learning

- Motivating inquiry-based science learning
- Three-year rollout
- Content knowledge, transfer, strategy use
- Engagement: Self-efficacy, persistence

Intell

Affect-Informed Learning

Supporting motivated learning via affective modeling

Collaborators

- Kristy Boyer
- Cohan Carlos
- Julius Goth
- Eunyoung Ha
- Seung Lee
- Sunyoung Lee
- Dan Longo
- Scott McQuiggan
- Bradford Mott
- John Nietfeld
- Hiller Spires

